

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/52

Paper 5 Practical Test

May/June 2014

1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials:

As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Notes for Use in Qualitative Analysis for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 8 printed pages.

1 You will be investigating the rate at which acid moves from an aqueous solution into a block of agar. The agar contains the indicator phenolphthalein. This indicator is purple in a pH of greater than 8 and colourless in a pH of less than 8.

You are provided with a dish containing two agar blocks of dimensions $2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}$.

- Use the forceps to place one, uncut, agar block into a beaker. Label this beaker A.
- Cut the other block as shown in Fig. 1.1 to make a cube of $1 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm}$.

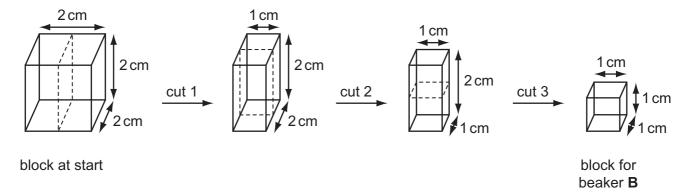


Fig. 1.1

- Return the excess agar to the dish.
- Use the forceps to place the $1 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm}$ block of agar into a beaker. Label this beaker **B**.
- (a) State the colour of the agar and what this tells you about its pH.
- (b) (i) Read part (b)(ii) on page 3.

Draw a table of results to record the observations that you make in the space below.

[2]

- (ii) To beaker A add sufficient hydrochloric acid to cover the block of agar and immediately start the stopclock.
 - Record the time taken (in seconds), in your table, for the block to go colourless.
 - Repeat the procedure for beaker B containing the smaller block of agar.

[2]

(c)	Explain why the agar changes colour.		
		[1]	
(d)		ntify one inaccuracy of this experimental method and suggest an improvement to reduce inaccuracy.	
	inac	ccuracy	
	ımp	rovement	
		[2]	
(e)	(i)	Explain the difference between the times taken for the two blocks to go colourless in beakers ${\bf A}$ and ${\bf B}$.	
		[1]	
	(ii)	Suggest how you could extend this experiment to be more confident about your explanation in (i).	
		[1]	

2	Solid X is a mixture of two salts which have the same anion. You are going to carry out a series
	of tests to identify the anion and the two cations.

(a)	lde	ntification of the anion
	(i)	Dissolve one spatula load of solid \mathbf{X} in a test-tube which is three-quarters full of distilled water. Divide the resulting solution into two test-tubes in equal portions.
		Record the colour of the solution.
		colour of solution [1]
	(ii)	To one portion of the solution add a few drops of silver nitrate solution.
		Record your observations and state what you can conclude about the anion in ${\bf X}$.
		observations
		conclusion about the anion [2]
	(iii)	To the other portion of the solution add barium chloride solution.
		Record your observations and state what you can conclude about the anion in X .
		observations
		conclusion about the anion [2]
(b)	lde	ntification of the two cations
		a test-tube with distilled water and then empty it into a small beaker. Add one spatula d of solid ${\bf X}$ to the water in the beaker and stir well to dissolve the solid. Do not shake.
	(i)	Slowly add approximately 50 cm ³ of ammonia solution to the solution in the beaker.
		Record your observations. Keep the mixture for (b)(ii).
		observations

(ii)	Filter the mixture from (b)(i) into a large test-tube. When you have collected about 5 collected of the filtrate remove the test-tube. You do not need to filter any more of the mixture.	m ³
	Wash the residue with a small amount of distilled water and discard the liquid into t beaker labelled washings .	he
	Describe the colours of the filtrate and of the residue.	
	colour of filtrate	
	colour of residue	[2]
(iii)	Use your results from (b)(i) and (b)(ii) to identify the cations in the filtrate and in t residue.	he
	cation in filtrate	
	cation in residue	[2]

3 You are going to find out how the potential difference (p.d.) across a lamp and the power of the lamp vary with the length of resistance wire in series with the lamp.

The circuit shown in Fig. 3.1 has been set up for you.

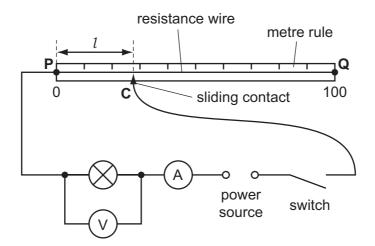


Fig. 3.1

(a) (i) Close the switch and place the sliding contact **C** on the resistance wire at a distance of 10.0 cm from end **P**.

Record this length *l* of resistance wire used, in Table 3.1.

Record, in Table 3.1, the current I flowing through the lamp and the potential difference V across it.

[1]

(ii) Insert the unit for the current I in Table 3.1.

Table 3.1

length 1/cm	current I/	p.d. V/V	power P/W

(iii) Repeat step (i) for values of *l* of 20.0 cm, 40.0 cm, 60.0 cm and 80.0 cm.

Record your values of l, I and V in Table 3.1. Remember to switch off the circuit between readings. [4]

(b)	(i)	Calculate the power, P of the lamp for each length of wire, using the equation		
		$P = V \times I$		
		Record your values of <i>P</i> in Table 3.1 to an appropriate number of significant figures.	[2]	
	(ii)	What have you observed, when carrying out this experiment, which shows that t power of the lamp decreases as the length of resistance wire increases?	:he	

[1]

NOTES FOR QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia	
ammonium (NH ₄ ⁺)	ammonia produced on warming	-	
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution	
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess	
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess	
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution	

Test for gases

gas	test and test results	
ammonia (NH ₃)	turns damp red litmus paper blue	
carbon dioxide (CO ₂)	turns limewater milky	
chlorine (Cl ₂)	bleaches damp litmus paper	
hydrogen (H ₂)	"pops" with a lighted splint	
oxygen (O ₂)	relights a glowing splint	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.